Intestinal Infections and the Supernatant
Supernatant Synbiotic Formula was developed to address hospital generated infections (nosocomal infections) from organisms such as C. difficele, Staph aureus, Klebseilla, and vancomycin-resistant Enterococcus faecium. The formula is comprised of supernatant’s many nutrients including the well-researched antibacterial substances such as bacteriocins, which suppress the growth of pathogenic bacteria (Cotter & Hill, 2013).
Immunobiotics: The combination of lactic acid bacteria (LAB) and their metabolites is given much consideration as a method to improve human immune response against viral and fungal overgrowth. The term “immunobiotic” is a relatively new way to describe the antimicrobial qualities exerted by probiotics and their metabolites (Arena et al., 2018). The term ‘immunobiotic’ has been proposed to define beneficial microbes with the ability to regulate the immune system and lower inflammation of the gut tissue. For example, the probiotics L. rhamnosus and L. plantarum carry immunobiotic properties and are shown to increase protection against viral intestinal infections (Albarracin et al., 2017). In a different study on mice, Kikuchi et al. (2014) discovered that oral administration of L. plantarum enhanced IgA secretion in both intestine and lung tissues, supporting against influenza virus infection. Immunobiotics, the combination of probiotics and their supernatant metabolites, have been found to support and benefit respiratory immunity (Zelaya et al., 2016), modulate mucosal cytokine profiles, IgA levels, and more, in various conditions of gastrointestinal inflammation (Carvalho et al., 2017).
Bacteriocins and Antimicrobial Properties: One of the properties that is given much attention is the bacterially produced antimicrobial peptides of bacteriocins (e.g., Cotter & Hill, 2013; Yang et al., 2014; Cotter et al., 2005). Already in 2005, Cotter & Hill observed that bacteriocin nisin functions by binding to lipid II, which is also the target of vancomycin antibiotic. This led to the suggestion that ‘bacteriocin nisin’ could be used as a template to design novel drugs. In 2018, the research to discover the mechanism of bacteriocin against pathogenic activity, including Staphylococcus aureus, continued with the discovery of critical features in the structure of bacteriocins that gives it such a ‘potent activity against pathogenic staphylococci’ (O’Connor et al., 2018).
Probiotics and their supernatant’s metabolites, including microRNA (or ORNs) are shown in research to regulate a balanced ecosystem in the GI tract and protect against bacterial pathogens (Aguilar et al., 2019; Goldenberg et al., 2013; Górska et al., 2016).
References
- Aguilar, C., Mano, M., & Eulalio, A. (2018). MicroRNAs at the Host–Bacteria Interface: Host Defense or Bacterial Offense. Trends in microbiology. Abstract
- Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Mata-Haro, V., González-Córdova, A. F., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105-114. Abstract
- Albarracin, L., Kobayashi, H., Iida, H., Sato, N., Nochi, T., Aso, H., ... & Villena, J. (2017). Transcriptomic analysis of the innate antiviral immune response in porcine intestinal epithelial cells: influence of immunobiotic lactobacilli. Frontiers in immunology, 8, 57. Article
- Arena, M. P., Capozzi, V., Russo, P., Drider, D., Spano, G., & Fiocco, D. (2018). Immunobiosis and probiosis: antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Applied microbiology and biotechnology, 102(23), 9949-9958. Abstract
- Carvalho, R. D., do Carmo, F. L., de Oliveira Junior, A., Langella, P., Chatel, J. M., Bermúdez-Humarán, L. G., ... & de Azevedo, M. S. (2017). Use of wild type or recombinant lactic acid bacteria as an alternative treatment for gastrointestinal inflammatory diseases: a focus on inflammatory bowel diseases and mucositis. Frontiers in microbiology, 8, 800.
- Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins—a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95. Abstract
- Cotter, P. D., Hill, C., & Ross, R. P. (2005). Food microbiology: bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777. Abstract
- Goldenberg, J. Z., Ma, S. S., Saxton, J. D., Martzen, M. R., Vandvik, P. O., Thorlund, K., ... & Johnston, B. C. (2013). Probiotics for the prevention of Clostridium difficile‐associated diarrhea in adults and children. Cochrane Database of Systematic Reviews, (5). Abstract
- Górska, S., Dylus, E., Rudawska, A., Brzozowska, E., Srutkova, D., Schwarzer, M., ... & Gamian, A. (2016). Immunoreactive proteins of Bifidobacterium longum ssp. longum CCM 7952 and Bifidobacterium longum ssp. longum CCDM 372 Identified by gnotobiotic mono-colonized mice sera, immune rabbit sera and non-immune human sera. Frontiers in microbiology, 7, 1537. Article
- O’Connor, P. M., O’Shea, E. F., Cotter, P. D., Hill, C., & Ross, R. P. (2018). The potency of the broad spectrum bacteriocin, bactofencin A, against staphylococci is highly dependent on primary structure, N-terminal charge and disulphide formation. Scientific reports, 8(1), 11833. Article
- Yang, S. C., Lin, C. H., Sung, C. T., & Fang, J. Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in microbiology, 5, 241. Article
To your health,
Seann
We have developed our products based on scientific research and/or the practical experience of many healthcare practitioners. There is a growing body of literature on food based nutrition and supplements and their application in support of our health. Please use our products under the advisement of your doctor.